Maximum likelihood estimation of skew-t copulas with its applications to stock returns
نویسنده
چکیده
The multivariate Student-t copula family is used in statistical finance and other areas when there is tail dependence in the data. It often is a good-fitting copula but can be improved on when there is tail asymmetry. Multivariate skew-t copula families can be considered when there is tail dependence and tail asymmetry, and we show how a fast numerical implementation for maximum likelihood estimation is possible. For the copula implicit in the multivariate skew-t distribution of Azzalini and Capitanio (2003), the fast implementation makes use of (i) monotone interpolation of the univariate marginal quantile function and (ii) a reparametrization of the correlation matrix. The same techniques apply to the generalized hyperbolic skew-t copula. Our numerical approach is tested with simulated data with realistic parameters. A real data example involves the daily returns of three stock indices: the Nikkei225, S&P500, and DAX. We investigate both unfiltered returns and GARCH/EGARCH filtered returns comparing with the Azzalini–Capitanio skew-t, generalized hyperbolic skew-t, non-skewed Student-t, skew-Normal, and Normal copulas.
منابع مشابه
Maximum likelihood estimation of skew t-copula
We construct a copula from the multivariate skew t-distribution of Azzalini and Capitanio (2003). This copula can capture asymmetric and extreme dependence between variables, and it is one of the few that is effective when the number of dimensions is high. However, two problems arise when estimating the parameters by maximum likelihood estimation. Here, we solve these problems and provide a con...
متن کاملAn Extension of the Birnbaum-Saunders Distribution Based on Skew-Normal t Distribution
In this paper, we introducte a family of univariate Birnbaum-Saunders distributions arising from the skew-normal-t distribution. We obtain several properties of this distribution such as its moments, the maximum likelihood estimation procedure via an EM-algorithm and a method to evaluate standard errors using the EM-algorithm. Finally, we apply these methods to a real data set to demonstr...
متن کاملChange Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering
In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...
متن کاملFitting bivariate cumulative returns with copulas
We propose a copula based statistical method of fitting joint cumulative returns between a market index and a stock from the index family to daily data. Modifying the method of inference functions for margins (IFM method), we perform two separate maximum likelihood estimations of the univariate marginal distributions, assumed to be normal inverse gamma mixtures with kurtosis parameter equal to ...
متن کاملA Family of Skew-Slash Distributions and Estimation of its Parameters via an EM Algorithm
Abstract. In this paper, a family of skew-slash distributions is defined and investigated. We define the new family by the scale mixture of a skew-elliptically distributed random variable with the power of a uniform random variable. This family of distributions contains slash-elliptical and skew-slash distributions. We obtain the moments and some distributional properties of the new family of d...
متن کامل